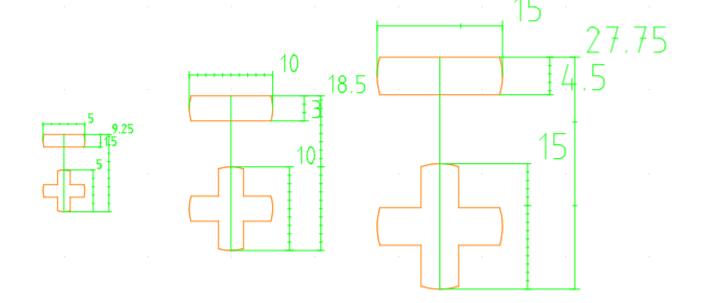
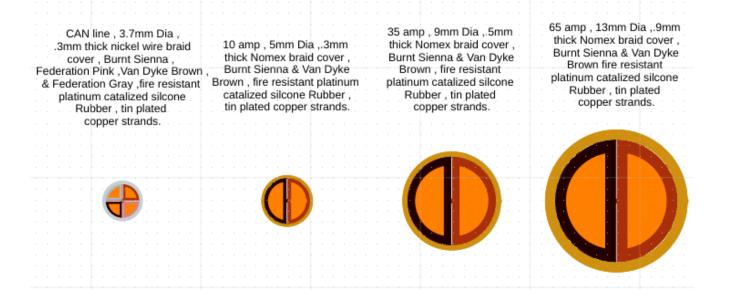
Wire, Electrical cords and plugs

There are 4 different federation cords and plugs , the + & - plugs are made from a "tough ceramic" held together with A286 Stainless Steel Torx screws and Spiralok nuts , all internal connections are soldered and the (separate) springs are 718 alloy , the stranding is tin plated and it is fine , further details are :

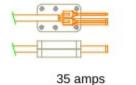

Name	Power	Number of conductors	Style	Primary use
10 Amp (5mm Dia.)	300 watts	2 x 2.5mm ²	+ & -	Lamps , fans , computers , Etc.
35 Amp (9 mm Dia.)	1050 watts	2	+ & -	Blenders, drills, bench grinders, , Hot pots , Etc.
65 Amp (13mm Dia.)	1950 watts	2	+ & -	Electric Woks , SCUBA tow chargers , Commercial hot pots.
CAN line (3.7mm Dia.)	15 watts data / 15 watts power (60 with specialSocket)	(2 + 2) x .52mm ²	2.5mm headphone	Internet and power for small devices

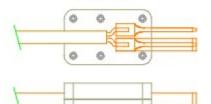
Loads larger than 65 Amps are hard wired using vacuum insulated copper pipe pairs recirculating chilled air.

10 Amp

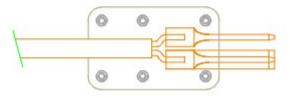

35 Amp

65 Amp



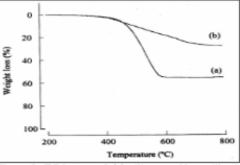

All dimensions are in millimeters

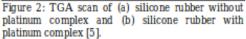
• >.25 mm² copper per amp (CAN line is .26 mm² to match 20 AWG wire)



Name	Area	Solution
10 amps	150mm ²	5mm rod = 4.75 x 16 x 2 = 152mm ²
35 amps	525mm ²	10mm rod = 9.5 x 28 x 2 = 532mm ²
65 amps	975mm ²	15mm rod = 14 x 35 x 2 = 980mm ²

15 square millimeters of contact area minimum per amp.


Electrical wiring


- Course stranded Single conductor wire is available in 17.03mm² (65 amps), 9.17mm² (35 amps) 2.58mm²(10 amps), 1.43mm² (5 amps), and .56mm² (2 amps).
- 2. Course stranded wire is available in Van Dyke Brown (Colorlex), Burnt Sienna (Colorlex), Raw Sienna, Yellow Ocher, Raw Umber, Burnt Umber, federation pink (HTML #d5838c), and federation gray (HTML #adbac6) with and without a Antique White stripe as well as pure Antique White, for a total of 17 color codes in 5 sizes equaling **85 sizes and colors**. (note. colors are **NOT** standardized we must standardize them ourselves !)
- 3. Construction is as follows **.56**mm²-7x28ga , **1.43**mm²-7x24ga , **2.58**mm²-7x23ga , **9.17**mm²-7x16ga , **17.1**mm²-19 x .9mm , in tin plated strands (the tin is in addition to the copper) insulated with fireproof Van Dyke Brown silicone rubber and a bonded braided Nomex cover.

4. ALL wire is tested for copper purity and tin purity !

Transition Metal Complexes

Platinum, rhodium, and iridium complexes impart improved flame resistance to silicone rubber at low loadings (typically < 1%wt) [5, 6]. Platinum is particularly useful because it serves as both a flame retardant and a catalyst for addition cure silicone rubber. The catalytic action of platinum makes it a powerful flame retardant in silicone rubber. During thermal oxidation, the platinum compound catalyzes the formation of methylene-bridges, both inter- and intramolecularly, reducing the potential for thermal degradation [5]. This can be seen in TGA scans of a silicone rubber with and without ppm order of platinum complex added (FIG. 2) [5].

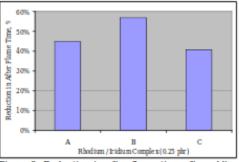


Figure 3: Reduction in after flame time after adding 0.25 phr (A) bis(1,5-cyclooctadiene diriridium(I) dichloride, (B) iridium(III) acetylacetonate or (C) rhodium(III) acetylacetonate.